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Abstract. We study, on ad-dimensional hypercubic lattice, a random walk which is
homogeneous except for one site. Instead of visiting this site, the walker hops over it with
arbitrary rates. The probability distribution of this walk and the statistics associated with the
hop-overs are found exactly. This analysis provides a simple approach to the problem of tagged
diffusion, i.e. the movements of a tracer particle due to the diffusion of a vacancy. Applications
to vacancy mediated disordering are given through two examples.

1. Introduction

The venerable problem of a random walk on a regulard-dimensional hypercubic, infinite
lattice continues to generate considerable interest [1–3], from both novel quantities
associated with the simple walk and new variations of the walk itself. In the simplest
case (which is called Ṕolya walk [4]), the walker moves to one of the nearest-neighbour
sites with probability 1/2d at each timestep. One of the variations involves a ‘taboo’ site, to
which the walker may never visit. The question that is usually asked refers to the probability
[5, 1] (‘taboo probability’) of the walker visiting a certain site on thenth step without having
visited the taboo site on any of the erlier steps 1, 2, . . . , n− 1. An alternative way to think
about the taboo site is to consider it as an irreversible trap, so that the above question
translates into a question on the survival probability. A slightly different situation is when
the walker arriving at a neighbouring site of the taboo, is allowed to remain stationary, with
probability 1/2d, instead of moving into the forbidden site. All these variations belong
to the chapter of lattice walks with ‘defective’ sites in the theory of lattice walks [1]. In
this paper, we investigate a further case of walks with a defective site, namely, the walker
hopping overthis special site. Since it is no longer ‘taboo’ (in the above sense), it will be
referred to as the ‘hop-over’ site. We write the Master equation for such a walk, with 2d

arbitrary hop-over rates. Thanks to translational invariance, we may choose to locate the
hop-over site at the origin. In Fourier space, we obtain a closed expression, in terms of the
inverse of a matrix, for the probability distribution generating function, given a particular
initial position s0.

Similar to the derivation of ‘taboo probabilities’, the straightforward way to find the hop-
over probabilities would rely on a study of return probabilities and first passage times. In
this approach, probabilities of returning to the neighbourhood of the originwithout hopping
over it are exploited in infinite sums over individual hop-over attempts. A similar method
was used for solving the related problem of tagged diffusion [6, 7]. Our present approach is
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different, considerably simpler and more compact in terms of formulae. Instead of infinite
sums, only the inverse of a certain 2d × 2d matrix needs to be computed. Ind = 2, where
this walk displays the most interesting characteristics, the inversion is quite simple.

We are also able to keep track of both the direction and the frequency of the hop-over
attempts. As a result, an interesting application is the diffusive behaviour of a tagged particle
[6, 7]. Such a tag may also be thought of as a ‘passive walker’, namely, a particle which
remains inert until it is forced to exchange places with a normal, ‘active’ random walker.
In metals or alloys, an impurity atom can play the role of a tag, while a vacancy diffuses as
a typical walker [8–15]. We will discuss how to map the hop-over problem to the tagged
walk. Finally, from the frequency of hop-over attempts, we can compute the distribution
of ‘hits’ received by the tag. We present two related applications: the first studies the
rate of disordering of the surface of an A-B alloy, with a certain type of interactions, due
to the wandering of a surface vacancy, while the second investigates the asymptotic time
evolution of the disorder caused by a single Brownian vacancy in an initially completely
phase seggregated, two-species system.

This paper is organized as follows. In the next section, the model and the Master
equation are carefully defined (sections 2.1 and 2.2) and the explicit solution is presented
allowing for the extraction of the statistics on the hop-over events (section 2.3). Section 3
presents the relationship to the tagged diffusion problem with its complete solution through
the techniques of section 2, along with two associated applications presented in sections 3.2
and 3.3. The last section is devoted to a summary and possible generalizations.

2. Random walk with a hop-over site

For completeness, we devote section 2.1 to definitions, notations, and some well known
properties of a random walk on a lattice.

2.1. The simple random walk

On an infinited-dimensional hypercubic lattice, the sites are labelled bys while the set of
2d lattice vectors is denoted by{a}. A walker, performing a pure random walk of Pólya type
[1, 4] moves from a site to one of the 2d nearest neighbour sites at each timestep (i.e. from
s to s+ a) with probabilityp. If 2dp < 1, the walker remains stationary with probability
1− 2dp. Given an initial positions0 we are interested in the probability distribution of
finding the walker aftern steps at sites : PFn (s|s0) . Here, the superscriptF reminds us
that this is the distribution for ‘free’ diffusion. The equation governing this walk is

PFn+1(s|s0)− PFn (s|s0) = p
∑
{a}

[PFn (s+ a|s0)− PFn (s|s0)] (1)

with the initial condition:

PF0 (s|s0) = δs,s0. (2)

Due to translational invariance, the solution can be obtained simply in terms of the generating
function in Fourier space:

P(s|s0; ξ) ≡
∞∑
n=0

Pn(s|s0)ξ
n |ξ | < 1 (3)

P̃ (k; ξ) ≡
∑
s

P(s|s0; ξ)eik·s. (4)
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Applying (3) to s = 0 in (1), we obtain a useful identity

ξp
∑
{a}
PF (a|s0; ξ) = [PF (0|s0; ξ)− δ0,s0] + ξ(2dp − 1)P F (0|s0; ξ). (5)

Continuing, we substitute (1) into (3) and (4) to arrive at

1

ξ
[P̃ F (k; ξ)− eiks0] − P̃ F (k; ξ) = −p

∑
{a}

[1− cos(k · a)]P̃ F (k; ξ).

The solution is trivial:

P̃ F (k; ξ) = G(k, ξ)eiks0 (6)

where

G(k, ξ) ≡
{

1− ξ + ξp
∑
{a}

[1− cos(k · a)]
}−1

(7)

is the well known propagator for free diffusion.
The inverses to (4), (3) are given by

P(s|s0; ξ) =
∫
k

e−ik·sP̃ (k; ξ) (8)

and

Pn(s|s0) =
∮
ξ

ξ−nP (s|s0; ξ) (9)

where ∫
k

≡
∫ π

−π

ddk

(2π)d
and

∮
ξ

≡ 1

2π i

∮
C

dξ

ξ

and C is a suitable (counterclockwise) contour aroundξ = 0. Thus, the solution to the
simple random walk can be written as

PF (s|s0; ξ) =
∫
k

e−ik·(s−s0)G(k, ξ) (10)

and

PFn (s|s0) =
∫
k

∮
ξ

ξ−ne−ik·(s−s0)G(k, ξ). (11)

In subsequent sections, several probability distributions will occur frequently. For
convenience, we summarize their properties here. Define

t ≡ PF (0|0; ξ) (12)

u ≡ PF (a|0; ξ) (13)

h ≡ PF (a| − a; ξ) (14)

v ≡ PF (a|b; ξ) b 6= ±a (only for d > 2) (15)

all of which are known functions ofξ . In particular,t (ξ) is just the generating function for
the return probability of a pure random walk. The definitions (12), (14) and (15) allow us
to write

PF (a|b; ξ) = v + (t − v)δa,b + (h− v)δa,−b (16)
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where botha andb are lattice vectors (nearest neighbours of the origin). Applying (5) to
the simplest random walk (p = 1/2d), we find relations betweent, u, h, andv [6], e.g. by
choosings0 ≡ 0 in (5)

t = 1+ ξu (17)

and (ford > 2) by choosings0 ≡ b
ξp[t + 2(d − 1)v + h] = u. (18)

Finally, since we will be interested in late times (n → ∞) corresponding to the limit
ξ → 1−, we note the following well known asymptotic behaviour oft [1]:

t →


1/
√

2(1− ξ) for d = 1

1

π
ln

(
8

1− ξ
)

for d = 2

constant ford > 2.

(19)

From (17), we conclude thatu behaves the same way.

2.2. Walks with a hop-over site

Without loss of generality, let us place the hop-over site at the origin. The probability for
the walker to hop from−a to a will be denoted bypa. By keeping this rate different from
p, we will be able to log the different hop-over attempts. Clearly,PHn (s|s0), the distribution
with such a site, will be a polynomial in the variouspa’s. Meanwhile, the coefficient of
pνaa will be associated with the subset of those walks which have hopped over the origin
(from −a to a) νa times. We will return to these considerations in more detail below.

Again, we let the walker start ats0, which is not the origin, i.e.

PH0 (s|s0) = δs,s0 and s0 6= 0. (20)

The subsequent evolution ofPH is governed by the following Master equation:

PHn+1(s|s0)− PHn (s|s0) = p(1− δs,0)
∑
{a}

[PHn (s+ a|s0)− PHn (s|s0)]

+
∑
{a}
δs,a[paP

H
n (−a|s0)− (p−a − p)PHn (a|s0)] (21)

the first term on the right shows that the walker never visits the forbidden site (0) and
that, away from the neighbourhood of the origin, it performs a simple Pólya walk (a ‘free
walk’). The latter term describes the possibility of hop-over, when the walker finds itself
on a nearest-neighbour site of0 (see figure 1).

Going over to (k, ξ ) space by (4), (3), this equation becomes

G−1(k; ξ)P̃ H (k; ξ)− eiks0 = −ξp
∑
{a}
PH(a|s0; ξ)

+ξ
∑
{a}

[paP
H(−a|s0; ξ)− (p−a − p)PH (a|s0; ξ)]eik·a.

This representation clearly displays the effects of the ‘defect’ (associated with the hop-over
site), since the left-hand side consists of the terms for the pure random walk, only. A more
elegant form would be

G−1(k; ξ)P̃ H (k; ξ)− eiks0 = ξ
∑
{a}
0(k,a)PH (a|s0; ξ) (22)
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Figure 1. Random walk with a single hop-over site. The diamond symbolizes the hop-over site
located in the origin and the circle represents the vacancy.

where

0(k,a) ≡ p(eik·a − 1)+ p−a(e−ik·a − eik·a). (23)

Now, the right-hand side of (22) can be regarded as an extra inhomogeneity for the solution:

P̃ H (k; ξ) = G(k; ξ)
[

eiks0 + ξ
∑
{a}
0(k,a)PH (a|s0; ξ)

]
. (24)

To find the solution explicitly, we must determine the 2d quantitiesPH(a|s0; ξ). This
can be done by exploiting (8) and (24)

PH(a|s0; ξ) =
∫
k

e−ik·aP̃ H (k; ξ)

=
∫
k

e−ik·aG(k; ξ)
[

eiks0 + ξ
∑
{b}
0(k, b)PH (b|s0; ξ)

]
= PF (a|s0; ξ)+

∑
{b}
ξ

∫
k

e−ik·aG(k; ξ)0(k, b)PH (b|s0; ξ). (25)

Linear inPH(a|s0; ξ), equation (25) can be solved:

PH(a|s0; ξ) =
∑
{b}
La,b(ξ)P

F (b|s0; ξ) (26)

whereL is the inverse of the 2d × 2d matrix with elements:

(L−1)a,b = δa,b − ξ
∫
k

e−ik·aG(k; ξ)0(k, b). (27)

OncePH(a|s0; ξ) are known, they can be substituted back into (24) and the explicit solution
can be obtained:

P̃ H (k; ξ) = P̃ F (k; ξ)+
∑
{a,b}

ξG(k; ξ)0(k,a)La,b(ξ)P F (b|s0; ξ). (28)

Using (8), we may return to the lattice:

PH(s|s0; ξ) = PF (s|s0; ξ)+
∑
{a,b}

[
ξ

∫
k

e−ik·sG(k; ξ)0(k,a)
]
La,b(ξ)P

F (b|s0; ξ). (29)
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Making use of equation (23) the elements ofL−1 become expressed solely in free walk
terms:

(L−1)a,b = δa,b − ξ{p−bPF (a| − b; ξ)+ (p − p−b)P F (a|b; ξ)− pPF (a|0; ξ)}. (30)

The integral in the square bracket of equation (29) is computed similarly:

ξ

∫
k

e−iksG(k; ξ)0(k,a) = ξp−aPF (s| − a; ξ)
+ξ(p − p−a)P F (s|a; ξ)− ξpPF (s|0; ξ). (31)

Equations (29)–(31) express the generating function of the hop-over walk in terms of the
hop-over rates{pa} and the generating function characterizing the free walk. It may be
worthwhile to interpret the second term in (29) physically. From (27)L can be expanded
as a power series inΓ, which accounts for the difference between a free passage through
the origin and an hop-over. Thus, thenth term in thisΓ series in (29) can be thought of
as paths which haven encounters with the hop-over site. This connection will be explored
further in the next section.

Here, we end with a closer look into the case withisotropic hop-over rates, i.e.

pa = p′

but with p′ not necessarily being equal top. Then, equations (29)–(31) reduce to

PH(s|s0; ξ) = PF (s|s0; ξ)+ ξ
∑
{a,b}

[p′PF (s| − a; ξ)+ (p − p′)P F (s|a; ξ)

−pPF (s|0; ξ)]La,b(ξ)P F (b|s0; ξ) (32)

while our task is to invert,

(L−1)a,b = δa,b − ξ [p′PF (a| − b; ξ)+ (p − p′)P F (a|b; ξ)− pPF (a|0; ξ)] (33)

wherea and b are nearest neighbours of the origin. Due to isotropy and homogeneity,
this matrix reduces considerably. The last term in the [. . .] brackets above is seen to be a
constant (13),−pu, for all matrix elements. Using (16), we write (33) as

(L−1)a,b = ξp(u− v)+ δa,b[1− ξ(p′(h− t)+ p(t − v))]
−δa,−bξ [p′(t − h)+ p(h− v)]. (34)

Since this matrix is of the form

A+ Bδa,b + Cδa,−b (35)

it is easy to check that its inverse is also of this form, namely,

La,b = A′ + B ′δa,b + C ′δa,−b (36)

= 1

B2− C2

[(
A(C − B)

2dA+ B + C
)
+ Bδa,b − Cδa,−b

]
. (37)

With the help of (34)–(37), we can carry out the matrix multiplication in (32). Note that
a quite a few sums over{a, b} decouple. For example, using (5) andPF (s|s′; ξ) =
PF (s′|s; ξ), we have

ξ
∑
{a}

[p′PF (s| − a; ξ)+ (p − p′)P F (s|a; ξ)− pPF (s|0; ξ)] = (1− ξ)P F (s|0; ξ).
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The explicit expression for our walker to move froms0 to s, with isotropic hop-over rate
p′, is

PH(s|s0; ξ) = PF (s|s0; ξ)− [B ′ + C ′ − A′(1− ξ)/ξp]

×[1− ξ + 2dξp]PF (s|0; ξ)P F (0|s0; ξ)
+ξ [B ′p + (C ′ − B ′)p′]

∑
{a}
PF (s|a; ξ)P F (a|s0; ξ)

+ξ [C ′p + (B ′ − C ′)p′]
∑
{a}
PF (s| − a; ξ)P F (a|s0; ξ) (38)

whereA′, B ′, andC ′ are to be read off from (34)–(37). Except for the first term (which
stands for the ‘free’ case), this expression shows the non-trivial effect of a single hop-over
site on the random walk explicitly . The various terms can be easily interpreted: the second
term removes the (free) walks which pass through the origin, while the last two takes into
account walks which land on a neighbour. If we take the usual continuum limit (the lattice
spacinga → 0, unit timestepτ → 0, such thata2/τ = 2d) of this expression, the effect
becomes vanishingly small. This result is perhaps not surprising, since a single site cannot
affect the properties of the random walker in the large distance, long time limit. However,
buried in this approach is a non-trivial question, namely, the statistics associated with the
hop-overs (how often and in which direction does the walker hops over the origin). That is
the subject of the next section.

2.3. Statistics of hop-overs

Next, we turn to a study of the statistics of the hop-overs. Note that, due to the longer
jumps (across the origin), the walker suffers anextradisplacement when compared with the
simple free walk. We define the variableρ as thenegativeof this extra displacement, for
reasons that will become obvious later. We will also be interested in the number of times
a hop-over jump has occurred. Thus, we defineφνn(s,ρ|s0) as the probability that, starting
from s0, the walker arrives at sites after n steps,
• having performedν hops over the origin and
• suffering a total ‘extra’ displacement equal to−ρ.
As usual, it is more convenient to work with generating functions in Fourier space.

Accordingly, we trade the variables (s,ρ ) and (n, ν) for their conjugates: (k,κ) and
(ξ, ζ ). We can write

8̃(k,κ; ξ, ζ ) =
∞∑

n,ν=0

∑
s,ρ

ξnζ νei(k·s+κ·ρ)φνn(s,ρ|s0). (39)

Once8̃(k,κ; ξ, ζ ) is known, the inverse transforms will lead us to the distribution itself:

φνn(s,ρ|s0) =
∮
ξ,ζ

∫
k,κ

ξ−nζ−νe−i(k·s+κ·ρ)8̃(k,κ; ξ, ζ ). (40)

To arrive at an expression for̃8(k,κ; ξ, ζ ), we first study a more detailed distribution:
φ
{νa}
n (s|s0), i.e. the probability of the walker makes exactlyνa hops from−a to a (for

eacha). Here {νa} denotes the set of 2d numbers associated with the different directions
of hop-over. Since each hop-over may occur only with probabilitypa, and the events are
independent, we conclude thatφ{νa}n (s|s0) must contain the factor

∏
{a} p

νa
a , where5{a} is

product over all the 2d nearest neighbours.
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Meanwhile, the extra displacement is just−ρ =∑{a} aνa, so that

φνn(s,ρ|s0) =
∑
{νa}

φ{νa}n (s|s0) δν,
∑
{a} νa δ−ρ,

∑
{a} aνa . (41)

In terms of generating functions, this expression becomes:

8̃(k,κ; ξ, ζ ) =
∑
{νa}

8̃{νa}(k; ξ)
∏
{a}
ζ νae−iκ·aνa (42)

where8̃{νa}(k; ξ) is the generating function and Fourier transform ofφ
{νa}
n (s|s0).

Armed with these considerations, we interpret the expression (28) physically. Expanding
L in a power series in thepa’s, we see thatPH itself is a power series in these rates.
Naively, it is tempting to identify these coefficients withφ{νa}n (s). However, there is an
implicit probability for the walker toremainat the site−a:

(1− pa − (2d − 1)p)

so that the coefficient ofpa also includes paths that avoid the origin. Another way to see
this difficulty is through the original Master equation (21), in which a particularpa appears
twice, once in the ‘gain’ ofPH(a) and once in the ‘loss’ ofPH(−a). Of course, both of
these terms represent thesamejump. Therefore, to avoid double counting, we can label one
of them byqa and, only at the end, setqa = pa. Let us emphasize that, withqa 6= pa, total
probability will not be conserved. But this is precisely the trick for distinguishing making
a hop-over jump fromnot making one.

For definiteness, let us choose to label the ‘gain’ term byqa. A little care leads us to
a modified version of (23):

0(k,a) ≡ p(eik·a − 1)+ q−ae−ik·a − p−aeik·a

= q−ae−ik·a + (p − p−a)eik·a − p (43)

from which we can find

P̃
H

(k; ξ) = P̃ F (k; ξ)+
∑
{a,b}

ξG(k; ξ)0(k,a)La,b(ξ)P F (b; ξ). (44)

Note that the overline over a quantity symbolizes the dependence on both sets of rates:{qa}
and{pa}.

With this trick, we can associate the coefficient of(qa)νa , in a power series expansion

of P̃
H

, with walks that includeνa hop-overs (jumps from−a to a). Now, we must pick
out these coefficients and then multiply them with the correct weight:(pa)

νa . This is
accomplished by applyingpνaa

∮
qa
q−νaa for eacha, so that

8̃{νa}(k; ξ) =
∏
{a}

∮
qa

(pa/qa)
νa P̃

H

(k; ξ). (45)

Substituting equation (45) back into (42), we see that the dependence on the variables
νa factorizes. Performing the sums over eachνa, we arrive at

8̃(k,κ; ξ, ζ ) =
∏
{a}

1

2π i

∮
dqa

qa − paζe−iκ·a P̃
H

(k; ξ) (46)

i.e.

8̃(k,κ; ξ, ζ ) = P̃
H

(k; ξ)|qa=paζe−iκ·a . (47)
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In other words,8̃(k,κ; ξ, ζ ) is nothing butP̃
H

(k; ξ) with all the qa’s simply replaced by
paζe−iκa.

From expression (44) for̃P
H

, we write explicitly:

8̃(k,κ; ξ, ζ ) = P̃ F (k; ξ)+
∑
{a,b}

ξG(k; ξ)0(k,κ,a; ζ )La,b(κ; ξ, ζ )P F (b|s0; ξ) (48)

where

0(k,κ,a; ζ ) = p−a[ζe−i(k−κ)·a − eik·a] + p(eik·a − 1) (49)

and

(L
−1
(κ; ξ, ζ ))a,b = δa,b − ξ{p−bζeiκ·bPF (a| − b; ξ)+ (p − p−b)P F (a|b; ξ)− pu}. (50)

Due to the extra factorζeiκ·b, it is difficult, even for the isotropic hop-over walk, to
invert L in arbitrary d. However, since most of the interesting effects occur ind = 2
(where the return probability approaches unity for large times), the 4×4 matrix can always
be inverted.

2.4. A hidden pure random walk

Finally, if we are interested in the simple hop-over problem in which all the rates are
identical, then we simply set allpa’s to p. In this case, we should also retrieve the pure
random walk if wesubtractthe extra displacements due to the hop-overs. In other words,
let us consider the probability of finding the walker ats − (−ρ), regardless of how many
hop-overs occurred or their directions. Thus, we study

Pn(r|s0) ≡
∑
s

∑
ρ

δr,s+ρ
∞∑
ν=0

φνn(s,ρ|s0).

Again, it is easier to study the generating function in Fourier space: Usingk as the variable
conjugate tor, we see that the above sums result in

P̃ (k; ξ) =
∑
n,r

eik·rξnPn(r|s0)

= 8̃(k,κ = k; ξ, ζ = 1).

Setting in (49)p−a = p for eacha, κ = k andζ = 1 we see that0(k,κ = k,a; ζ = 1) =
0. Thus, from (44), we obtain

P̃ (k; ξ) = P̃ F (k; ξ) (51)

justifying our expectation that, if wesubtractthe displacements due to hop-overs, the simple
random walk re-emerges.

3. Relation to tagged diffusion and some applications

The problem of tagged diffusion has been solved previously [7] (in two dimensions), [6]
(in d dimensions), using a ‘direct’ approach, i.e. by keeping track of all the possible ways
for the tag to be displaced by a random walker. In this section, we will first show that the
above analysis can be applied to provide a new approach to this venerable problem. As
examples of applications of our results, we devote the latter subsections to the dynamics of
two particular physical systems.



9676 R K P Zia and Z Toroczkai

3.1. The passive walk or tagged diffusion

For completeness, let us describe tagged diffusion in terms of a ‘passive’ random walker.
Returning to our infinited-dimensional hypercubic lattice, we place two walkers, one active
and one passive. Respectively, we label them B (for Brownian) and T (for tagged, or tracer,
particle). The former performs the simplest random walk, as in section 1.1 withp = 1/2d.
When B attempts to move to the site occupied by T, the two simply exchange places. Thus,
T does not move except when it is ‘kicked’ by B. In this sense, the motion of T could
be called ‘passive’ and will be referred to as a ‘Brownian driven walk’. The mathematical
properties of this pair of walkers are contained in the joint probability

8ν
n(r,ρ|r0, 0) (52)

for finding B at siter and T at siteρ, on thenth step of B and theνth step of T. Note that,
ν just represents the number of ‘kicks’ T received from B. The last arguments refer to the
initial condition, i.e. T being at the origin0 and B at siter0 6= 0.

From the description above, it is clear that,relative to T, B is performing a random
walk with a hop-over site. Thus,

8ν
n(r,ρ|r0, 0) = φνn(s,ρ|s0) (53)

of the previous section, providedr0 ≡ s0, and

s = r − ρ (54)

which is just the position of B relative to T. Of course, we expect the results following
this approach to be identical to those from the more ‘direct’ approaches in [6, 7]. To be
brief, here we will present only a certain projection of the distribution8ν

n(r,ρ|r0, 0), and
compare the results with those in [6].

Let us focus on the probability that T receivedν ‘kicks’ during n steps of B, regardless
of the final locations of the two walkers. Denoting this quantity byφνn(r0), it is

φνn(r0) =
∑
r,ρ

8ν
n(r,ρ|r0, 0) =

∑
s,ρ

φνn(s,ρ|s0). (55)

From (39) and (47), we see that the generating function

φ(ξ, ζ ) ≡
∑
n,ν

φνnξ
nζ ν

is given by

φ(ξ, ζ ) = 8̃(0, 0; ξ, ζ ) = P̃
H

(0, 0; ξ, ζ ). (56)

Since B performs a random walk, we setpa = p everywhere. Thus, from equation (48),
we have

φ(ξ, ζ ) = 1

1− ξ
[

1+ ξ
∑
{a,b}

0(0, 0,a; ζ )La,b(0; ξ, ζ )P F (b|s0; ξ)
]
. (57)

Using (49), (50) and (16), we find

0(0, 0,a; ζ ) = −p(1− ζ ) (58)

and

(L
−1
(0; ξ, ζ ))a,b = ξp(u− ζv)+ [1− ξζp(h− v)]δa,b − ξζp(t − v)δa,−b. (59)

Following (35)–(37), we writeL̄a,b in the form

L̄a,b = A′ + B ′δa,b + C ′δa,−b (60)
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so that

φ(ξ, ζ ) = 1

1− ξ
[

1− ξp(1− ζ )(2dA′ + B ′ + C ′)
∑
{b}
PF (b|s0; ξ)

]
. (61)

Now, to simplify this some more, we make use of (5) and carry out the algebra forA′, A,
etc:

1

1− ξ
[

1− (1− ζ )
1+ ξu+ ζ ξp((2− 2d)v − h− t)P

F (0|s0; ξ)
]
. (62)

Finally, exploiting (17), (18), we write a compact form for the generating function:

φ(ξ, ζ ) = 1

1− ξ
[

1− ξ(1− ζ )
ξ t − ζ t + ζ P

F (0|s0; ξ)
]
. (63)

Before inverting this result to obtainφνn , let us explore the scaling properties ofφ(ξ, ζ ),
in the limit ξ, ζ → 1−. For d 6 2, t diverges according to (19), but(1− ξ)t → 0. So
doesPF (0|s0; ξ) for any s0, with the result thatPF (0|s0; ξ)/t → 1. Keeping the leading
non-trivial orders, a simple scaling function emerges

(1− ξ)φ(ξ, ζ )→ 1

1+ x (64)

where

x ≡ (1− ζ )t (65)

is the scaling variable. If we trace the origins of (19), we can use an explicit and more
general form:x = (1− ζ )(1− ξ)(d−2)/2.

Returning to the inverse transforms, the one with respect toζ is trivial. Keeping in
mind (17), we find that

∮
ζ
ζ−νφ(ξ, ζ ) is identical to equations (34) and (35) of [6] obtained

via a completely different method. Sincet is a non-trivial function ofξ , the transform with
respect toξ cannot be carried out explicitly. Thus, we leave the final result in the form of
an inverse transform:

ν > 1:

φνn(r0) =
∮
ξ

ξ−n−ν

(1− ξ)t (1+ ξ t − t)(1− 1/t)ν−1PF (0|r0; ξ) (66)

ν = 0:

φ0
n(r0) =

∮
ξ

ξ−n

(1− ξ)t [t − P
F (0|r0; ξ)]. (67)

These are the explicit formulae, in anyd, for the probability that the tag particle (passive
walker) movesν steps while the vacancy (active walker) takesn steps, starting atr0 from
the tag. Of course, forν, n→∞, the scaling analysis above implies that

ν ∼ √n and
√

ln n

in d = 1 and 2, respectively. Above two dimensions, the return probability of the random
walker remains less than unity asn→∞, so thatφνn decays exponentially inν.
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Figure 2. A binary alloy model with extreme anisotropy. The configuration (a) ‘A on top of
b’ or ‘B on top of a’ is energetically favourable to, e.g. the configuration (b) ‘B on top of b’
which is considered as a mismatch.

3.2. Vacancy mediated disordering of an A-B alloy with extreme anisotropy

In some binary alloys, an ordered state consists of A and B atoms occupying alternate sites
on a cubic lattice. Under appropriate conditions, an atom cannot move unless a vacancy
comes in contact and exchanges places with it (also coined as the ‘vacancy-mechanism’)
[8–15]. Therefore, each atom can be regarded as a passive walker, while the vacancy plays
the role of an active walker. More precisely, consider a monolayer, composed of A and B
atoms in a square lattice, adsorbed on a substrate which interacts strongly with these atoms
in such a way that the ground state (of the monolayer) is a simple checkerboard configuration
(antiferromagnetic state, in the spin language). To simplify the problem further, we suppose
that theintralayer interactions are negligible. A similar arrangement may be realized by
a binary alloy in a NaCl structure on a simple cubic lattice, with extreme anisotropic
interactions. If the interactions are much stronger along thec-axis and we are focusing on a
(0, 0, 1) surface, the surface atoms will experience a much larger interaction with the bulk
than with their neighbours on the surface. For clarity, we will distinguish the surface atoms
from bulk ones, through labelling the former by A/B and the latter by a/b. The ground
state, is shown in figure 2(a), with only Ab and Ba bonds (and, of course, AB and ab
ones). Given our assumptions, Bb or Aa bonds, considered as ‘mismatches’, will be more
costly. Thus the movement of the vacancy can cause such excitations (figure 2(b)). In
a typical system, the vacancy will not perform a pure random walk, since its movements
will be governed by these excitation (or de-excitation) energies. However, if subjected
to sufficiently high temperatures, we could neglect this dependence and approximate the
vacancy by a Brownian particle.

Focusing on such a vacancy wandering in our monolayer, we can investigate the
evolution of the excitation energy through the creation of the mismatches. In particular, the
analysis above can be applied to answer the following question: after a long time (n� 1)
what is the expected excitation energy caused by this vacancy? Being proportional to the
expected number of ‘mismatches’, this energy shift can be found readily. Note that, though
the discussion above is clearly based on ad = 2 surface adsorbed on ad = 3 bulk, our
considerations will be applicable in anyd.

First, let thevacancybe located initially at the origin. Then we tageachatom simply
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by its initial location. Alternatively, using (54), we may uses0 (instead of−s0) to label
the particleuniquely. After the vacancy has takenn steps, atom ‘s0’ has sufferedν
displacements with probabilityφνn(s0), which is found in (55). Ifν is odd, there is a
‘mismatch’ for that particle. Theexpectedtotal number of mismatches is therefore expressed
by

〈Yn〉 =
∑′

s0

∞∑
ν=0

1
2[1− (−1)ν ]φνn(s0) (68)

where the prime on the summation symbol means thats0 = 0 is excluded. Such a sum for
the quantities in equations (66) and (67) is trivial:∑′

s0

P(0|s0; ξ) =
∑
s0

P(0|s0; ξ)− P(0|0; ξ) = 1

1− ξ − t. (69)

After summing overν, we find the desired result:

〈Yn〉 =
∮
ξ

ξ1−n

(1− ξ)2 [
(ξ − 1)t + 1

(ξ + 1)t − 1
]. (70)

To proceed, let us consider the largen limit, corresponding toξ → 1−. Since
(ξ −1)t → 0 even for cases whent diverges, the [.] bracket can be replaced by 1/(2t −1).
The n→∞ behaviour can then be extracted by exploiting the discrete Tauberian theorem
(see, e.g. [1, p 118]).

In d = 1, where we have a linear chain of atoms (adsorbed on a two-dimensional bulk),
we find that the expected number of mismatches grows like

〈Yn〉 ∼
√
n

√
2

π
. (71)

It is interesting to compare this result to theexpected number of distinct sitesvisited in an
n-step walk, which is a well known quantity [1]. Ind = 1, it grows like

〈Sn〉 ∼
√
n

√
8

π
asn→∞. (72)

Thus, we find that

〈Yn〉
〈Sn〉 →

1

2
(73)

as n → ∞, i.e. half of the visited sites will have mismatches. These results are hardly
surprising, since, at any time, only the string of atoms between the walker and its initial
position are ‘mismatched’.

For d = 2, the physical case, the results are more interesting. With the help of the same
theorem, we find

〈Yn〉 ∼ π

2

n

ln (8n)
asn→∞ (74)

whereas [1]

〈Sn〉 ∼ πn

ln (8n)
asn→∞ (75)

so that (73) proves to be valid in this case also.
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Though bulk materials in four or higher dimensions are not physical, we may
nevertheless consider the number of expected mismatches ind > 3. Here,t (1) is finite,
leading to

〈Yn〉 ∼ n 1

2t (1)− 1
. (76)

Comparing it with

〈Sn〉 ∼ n 1

t (1)
(77)

we find, instead of (73), a more ‘interesting’ result:

〈Yn〉
〈Sn〉 ∼

t (1)

2t (1)− 1
= 1

1+ R(0) asn→∞ (78)

whereR(0) is the probability that the walker ever returns to its starting site, another well
known quantity in the theory of random walks. Actually, equation (78) is in fact valid for
any d > 1. For d 6 2, the walk is recurrent, i.e.R(0) = 1, reducing (78) to1

2. Only for
d > 2, is the walks transient, whereR(0) < 1. An alternative way to display (78) is to
quote the ratio of particles performing an even number of exchanges with the hole to those
‘visited’ an odd number of times. Clearly, this ratio is simplyR(0). These remarks give an
intuitive explanation for (78). Since the random walk is recurrent ind = 1, 2, every particle
is sure to berevisited. Therefore, there should be as many particles visited an odd number
of times as those visited an even number of times, on the average. However, ford > 3, a
certain amount of the particles will be visited onlyonce. Thus, the particles visited an odd
number of times should be larger.

3.3. Propagation of interfacial disorder

As another example of how our results can be applied in disordering dynamics, we
investigate the asymptotic behaviour of the disorder induced by a single Brownian vacancy
[16]. Since the most interesting case isd = 2, we will limit our study here. The initial
configuration is a completely phase segregated system, i.e. an infinite square lattice, with
the upper half-plane filled with one type of particles (white) and the lower half-plane with
the other type (black). A single vacancy (the active random walker) is placed in the white
region at the interface between the two half-planes (figure 3), and labelled as the origin of
our coordinate system. As the vacancy wanders, particles will be drawn into the opposite
phases, leading to disordering. In the following, we will show that, aftern steps taken
by the wanderer, the ‘disorder-profile’ parallel and perpendicular to the interface scales as√
n and

√
ln n, respectively. The scaling functions are combinations of exponentials and a

modified Bessel function.
Let us focus on the black particles. One definition of disorder is the density of black

particles in the upper half-plane. Thus, we seek

8∗n(s)

the probability of finding a black particle at locations, aftern steps of the vacancy. Since
each particle performs a ‘passive’ random walk independent of the others, we may simply
track the movements of each black particle and sum over all those which reachs. As in
previous sections each black particle can be labelled uniquely by its initial positions0.

Since we are not interested in neither the location of the vacancy nor the frequency of
a particle being kicked it is clear that we should sum over the vacancy’s position and the
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Figure 3. Initial configuration of a sharp interface between two different species (transparent
and filled squares). The vacancy (large empty circle) is located initially at the origin of the
coordinate system.

frequency of the hits the black particle receives. Summing over all the black particles, we
see that

8∗n(s) =
(−)∑
s0

φn(s− s0| − s0) =
(−)∑
s0

∑
r

∞∑
ν=0

φνn(r, s− s0| − s0) (79)

where
∑(−) denotes summation over thes0’s in the lower half-plane only, andr is the

walker’s position aftern steps relative to the sites0. In terms of the generating function
(cf equations (39) and (40)), we have

8∗(s; ξ) =
∫
κ

(−)∑
s0

e−i(s−s0)κ8̃(0,κ| − s0; ξ, 1) (80)

where the sums overν and r have been carried out and the explicit dependence ons0

restored. Referring to equations (48)–(50), we have

8̃(0,κ| − s0; ξ, 1) = 1

1− ξ
{

1+ ξ
∑
{a,b}

0(0,κ,a; 1)La,b(κ; ξ, 1)P F (b| − s0; ξ)
}

(81)

0(0,κ,a; 1) = p(eiκ·a − 1) (82)

and

(L
−1
(κ; ξ, 1))a,b = δa,b − ξp{eiκ·bPF (a| − b; ξ)− u}. (83)

At this point, we will restrict our attention tod = 2 only. Clearly, there is no interesting
behaviour ind = 1. On the other hand, the random walk being transient ind > 2, disorder
will be confined in the large time limit.

In two dimensions, the matrix (83) is 4× 4 and must be inverted laboriously. The
calculations involved from (80) to (83) are reasonably straightforward, but extremely
lengthy. We shall present only the final result obtained in then� 1 limit.
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For fixeds = (s1, s2), we obtain

φ∗n(s) =
1

2
− 1+ 2s2

2

√
π(π − 1)

1√
ln n
− ln ln n

ln n
+O

(
1

ln n

)
. (84)

It is clear that the complete disorder is the final state, given byφ∗ = 1
2, i.e. ‘complete grey’.

As expected, this value is approached from below ifs2 > 0, and from above ifs2 < 0.
Since the frequency of ‘kicks’ scales as

√
ln n, we see that the decay follows 1/

√
ln n rather

than the typical decay of a random walk, i.e. 1/
√
n.

Instead of fixeds, we seek a scaled distribution. For this we note first that disorder
along the interface should arise relatively quickly, since it depends only on the presence of
the random walker, which wanders as far as

√
n. On the other hand, disorder in the vertical

direction (from the origin) relies entirely on the wandering of the passive walkers, so that
it will occur at the

√
ln n timescale. The appropriate scaling variables turn out to be

x = 2s1/
√
n and y = 2s2

√
π(π − 1)/ ln n

while the final result is

[φ∗n(x, y)−2(−y)] ln 8n = sgn(y)K0(|x|)e−|y| +O
(

1√
ln n

)
(85)

where sgn(y) denotes the sign ofy andK0 is the modified Bessel function. Note that the
square bracket on the left-hand side is a measure of the disorder, since2 is the step function
that represents the initial probability distribution for finding black particles. Finally, since
K0(z)→

√
π/2z exp(−z) for largez, we see that the decay in both directions are dominated

by exponentials (in the scaling variablesx andy).

4. Summary and outlook

We have presented a study of a class of random walks on ad-dimensional hypercubic
lattice in which the walker hops from site to nearest-neighbour site with one exception.
It hops overa particular site. In case the hop-over rates are isotropic, the full probability
distribution was found explicitly. We have also investigated the statistics associated with
the hop-overs, so that we can find both how often and in which direction the hop-overs
occur. The latter study can be readily applied to the behaviour of a tagged particle, which
moves only if a mobile vacancy were to exchange places with it. All previously known
results of tagged diffusion are easily recovered in this simpler, novel approach. Finally, we
showed how this study can be applied to two physical examples of the vacancy mediated
disordering process.

Though we have focussed only on infinite systems, our methods are readily generalizable
to finite (periodic) lattices. In three or higher dimensions, such a generalization is crucial,
since the random walk is transient, so that an infinitesimal density of vacancies cannot give
rise to system-wide dynamics. One way to estimate the effects of finite density is to consider
finite systems with periodic boundary conditions. Another interesting generalization is the
biasedrandom walk. With a bias, there would be little reason to study hop-over walks on
an infinite lattice, since the walker never returns to the hop-over site. By contrast, on a
finite lattice, the walker will ‘run into’ the special site periodically. In the steady state, i.e.
for times large compared with the traverse time, we can expect an asymmetric distribution
around the ‘defect’. If the hop-over rates are also biased, say, in the opposite direction,
it may be possible for an effective binding to occur. This problem can be mapped into a
limiting version of the biased diffusion of two species introduced sometime ago [17]. It
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would be very interesting to examine the walker-defect distributions and check if long-range
correlations [18] also appear.
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